Search results for "Vascular development"

showing 3 items of 3 documents

Perlecan-Induced Suppression of Smooth Muscle Cell Proliferation Is Mediated Through Increased Activity of the Tumor Suppressor PTEN

2004

We were interested in the elucidation of the interaction between the heparan sulfate proteoglycan, perlecan, and PTEN in the regulation of vascular smooth muscle cell (SMC) growth. We verified serum-stimulated DNA synthesis, and Akt and FAK phosphorylation were significantly reduced in SMCs overexpressing wild-type PTEN. Our previous studies showed perlecan is a potent inhibitor of serum-stimulated SMC growth. We report in the present study, compared with SMCs plated on fibronectin, serum-stimulated SMCs plated on perlecan exhibited increased PTEN activity, decreased FAK and Akt activities, and high levels of p27, consistent with SMC growth arrest. Adenoviral-mediated overexpression of cons…

MaleVascular smooth musclePhysiology:CIENCIAS MÉDICAS ::Farmacodinámica [UNESCO]Aorta ThoracicBasement MembraneCulture Media Serum-FreeMuscle Smooth VascularRats Sprague-DawleyMicePhosphorylationCells CulturedGlycosaminoglycansbiologyProtein-Tyrosine KinasesCell cycle:CIENCIAS MÉDICAS [UNESCO]musculoskeletal systemUNESCO::CIENCIAS MÉDICAS ::FarmacodinámicaUNESCO::CIENCIAS MÉDICAScardiovascular systemPhosphorylationSmooth muscle cell proliferationCardiology and Cardiovascular MedicineCell DivisionDNA ReplicationBasement membraneRecombinant Fusion ProteinsPerlecanProtein Serine-Threonine KinasesVascular injurySmooth muscle cell proliferation ; Restenosis ; Vascular injury ; Vascular development ; Basement membraneCatheterizationProto-Oncogene ProteinsAnimalsPTENProtein kinase BRestenosisCell growthVascular developmentOligonucleotides AntisenseFibronectinsRatsFibronectinFocal Adhesion Kinase 1Focal Adhesion Protein-Tyrosine Kinasesbiology.proteinCancer researchHeparitin SulfateCarotid Artery InjuriesProtein Processing Post-TranslationalProto-Oncogene Proteins c-aktHeparan Sulfate ProteoglycansCirculation Research
researchProduct

CNS Macrophages Control Neurovascular Development via CD95L.

2017

The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific del…

0301 basic medicineFas Ligand ProteinAngiogenesisMorphogenesisvesselmicrogliaBiologyGeneral Biochemistry Genetics and Molecular BiologyRetina03 medical and health sciencesangiogenesisMiceCell surface receptorExtracellularmedicineHuman Umbilical Vein Endothelial CellsNeuritesAnimalsHumansfas Receptorlcsh:QH301-705.5Cell ProliferationRetinaMicrogliaKinaseMacrophagesneurovascular developmentBrainNeurovascular bundle030104 developmental biologymedicine.anatomical_structurecortexsrc-Family Kinasesnervous systemlcsh:Biology (General)ImmunologySynapsesCD95CD95LNeuroscienceCNS macrophagesProtein BindingSignal TransductionCell reports
researchProduct

Primary culture of avian embryonic heart forming region cells to study the regulation of vertebrate early heart morphogenesis by vitamin A

2014

Background: Important knowledge about the role of vitamin A in vertebrate heart development has been obtained using the vitamin A-deficient avian in ovo model which enables the in vivo examination of very early stages of vertebrate heart morphogenesis. These studies have revealed the critical role of the vitamin A-active form, retinoic acid (RA) in the regulation of several developmental genes, including the important growth regulatory factor, transforming growth factor-beta2 (TGFβ2), involved in early events of heart morphogenesis. However, this in ovo model is not readily available for elucidating details of molecular mechanisms determining RA activity, thus limiting further examination o…

Early cardiovascular developmentVascular Endothelial Growth Factor AHeart morphogenesisRetinoic acidMorphogenesisEnzyme-Linked Immunosorbent AssayTretinoinChick EmbryoBiologyAvian ProteinsTissue Culture Techniqueschemistry.chemical_compoundTransforming Growth Factor beta2Gene expressionin vitro cultureRetinoic acidMorphogenesisAnimalsVitamin ACells CulturedGeneticsHomeodomain ProteinsEmbryonic heartHeart developmentGATA4Reverse Transcriptase Polymerase Chain ReactionTGFβ2MyocardiumGene Expression Regulation DevelopmentalHeartVitaminsChicken heart forming region cellsFibronectinsGATA4 Transcription Factor:NATURAL SCIENCES::Biology [Research Subject Categories]chemistryVertebratesDevelopmental biologyChickensDevelopmental BiologyResearch ArticleTranscription FactorsBMC Developmental Biology
researchProduct